
Inetlab.SMPP
.NET implementation of SMPP protocol for two-way SMS messaging

Table of Contents

 Introduction
 How To Try the Library
 SMPP Client

 Creation of SMPP-client and Connect
 Authentication (Bind)
 Connection recovery
 Create and send messages
 Receive messages
 Track message sending and delivery

 SMPP Server
 Create an SMPP-server and Connect (with sample app)
 Client authentication (Bind)
 Keeping connection active (InactivityTimeout and EnquireLink)
 Receive messages
 Send messages
 Deliver messages from sender to recipient
 Implementing SMPP Gateway
 Control SMPP responses

 Troubleshooting
 Common Mistakes
 Connection Lost
 Throttling Error
 Built-in Logging
 Diagnostic
 Tuning
 Wireshark

 FAQ
 SMPP Client
 Sending Commands and Getting Responses
 Concatenation
 SMPP Connection Mode
 Deivery Receipt
 Enquire Link

 How to install the license file
 Logging
 Map Encoding
 Message Composer
 Performance (with sample app)
 SMPP Server (with sample app)
 SMPP Address
 SSL/TLS Connection
 SubmitMulti. Send message to multiple destinations
 MMS notifications
 WAP Push
 Implementing USSD (Unstructured Supplementary Service Data)

 Getting Help
 Migration 1.x to 2.x
 Report a Bug
 Change Log
 License

Introduction
The Inetlab SMPP library implements SMPP protocol for two-way SMS messaging over TCP/IP. It allows to communicate with the
SMSC (Short Message Service Center) or SMS provider. Using the library, you can send SMS messages to customers, receive
messages from mobile devices and process delivery receipts. It supports long text messages in any encoding.

This is a robust SMPP framework for building production-grade solutions. Inetlab SMPP is helpful in such tasks as:

notifying users
command receiving from mobile subscribers (i.e. accounts balance requests)
creation of SMS Gateway for SMS traffic reselling
and many other applications.

The Inetlab SMPP library is fully compliant with SMPP specifications v3.3, v3.4, v5.0 and comes with a comprehensive set of code
samples. Enjoy exploring our demo applications, knowledge base and best support from our development team. Inetlab
developers will review your code and even analyze your Wirshark network SMPP data logs!

SMPP Client Features
Sending long Text messages as concatenated segments
Sending Binary messages
Sending Flash SMS
Sending WAP Push
Receiving SMS messages from mobile phones
Intuitive SMS building with fluent interface
Keeping connection to SMPP server alive
Working with any language including Arabic, Chinese, Hebrew, Russian, Greek and Unicode messages support
Reliable bulk SMS-sending at up to 500 messages per second rate
SSL/TLS support
and many more

SMPP Server Features
Multiple concurrent client connections support
Receiving SMS messages from connected clients
Sending Concatenated Text messages
Sending Delivery receipts
Message status query support
Message rate limit and throttling
Ability to forward received messages to next SMPP server
SSL/TLS support
Tests availability of client with enquiry_link command
Proxy Protocol for load-balancing support
and many more

How to try the library
Get samples
Latest source code of the samples for Inetlab.SMPP library you can find on the link. Or you can download zip archive with all
samples.

Start Demo Apps
Install Visual Studio 2017 or Visual Studio 2019 on your PC before starting the following .bat file.

Unpack ZIP and run file run_demo.bat in “smpp-samples-master” folder. In a console window appeared you might see the
question – respond with “Y” for starting samples compilation. After this (and further launches) of run_demo.bat you should see
two demo-applications started: "Inetlab.SMPP SmppServer Demo" and "Inetlab.SMPP SmppClient Demo".

Press button "Start Server" in the "Inetlab.SMPP SmppServer Demo" application

https://gitlab.com/inetlab/smpp-samples
https://gitlab.com/inetlab/smpp-samples/-/archive/master/smpp-samples-master.zip

You might see firewall warning "Windows Security Alert" after button "Start Server" is pressed.

For the application SmppServerDemo.exe to work correctly, you need to accept this Windows Defender Firewall request by
pressing "Allow access" button.

After starting SMPP-server, the "Start Server" button will be disabled and the "Stop Server" button will become clickable. Since
that moment your computer acts as an SMPP-server reachable at addresses: localhost:7777, 127.0.0.1:7777 as well as via IP-
address of your PC in the local network (Ethernet or Wi-Fi) at port 7777.

Demo-program starts SMPP-server on port 7777 by default. Of course, you can type in any port number you prefer before

getting server started. Mind the server port when connecting with SMPP-client on the next steps.

Showcases
Connect “I netlab.S MP P SmppC lient D emo” to “I netlab.S MP P SmppServer D emo”

Demo-application “Inetlab.SMPP SmppClient Demo” already set with default server address (localhost) and port (7777) values
matching default demo-server application settings. Press “Connect”, to get SMPP-client connected to the SMPP-server
implemented by “Inetlab.SMPP SmppServer Demo”.

Application "Inetlab.SMPP SmppServer Demo" now should have a line of text in the field “Connected Clients” showing “SystemId”
of the SMPP-client connected. In our case, it should be “SystemId: login”.

Now Log-fields of both applications should contain some lines of debug information related to the connection established.

There should be a record "Bind succeeded: Status: ESME_ROK, SystemId: Inetlab.SMPP" in the Log-field of "Inetlab.SMPP
SmppClient Demo" window.

Submit batch messages from client to server

Let’s make a batch sending of messages from client to server. Check the checkbox "Batch submit" next to "Submit" button in
"Inetlab.SMPP SmppClient Demo" window. There is a preset value of 1000 for sending 1000 test messages in a batch. Default
Submit speed is “0” – which means there is no delay performed between each message submission. Press "Submit" button to
start.

The new record saying "Submit message batch. Count: 1000. Text: test sms text." should appear in the LOG-field of "Inetlab.SMPP
SmppClient Demo" window. It should be followed by records "Batch sending completed. Submitted: 1000, Elapsed: 147 ms,
Performance: 6802.721 m/s" (your digits may vary). It means the SMPP-client have just sent 1000 messages to the server.

In Log-field of server application window you will see plenty of similar records (a thousand in fact):

… [timestamp]: Info (SmppServerDemo) Client 127.0.0.1:55624 sends message From:MySMSService, To:436641234567, Text: test
sms text[TRIAL] [timestamp]: Info (SmppServerDemo) SMS Received: test sms text[TRIAL] …

This example does not use any kind of looping in a code. It just prepares the collection of messages (1000 of identical messages in
this example) and sends to the server with a single command. The code performs sending with single asynchronous operation.
Collection may contain messages with varying recipient numbers and message bodies. The software automatically collects all
related server responses and returns them as a single collection. "Message speed" parameter sets the delay between messages. It
is useful to avoid “throttling” (throttling error) – special kind of an SMPP-server restriction applied to an SMPP-clients sending
messages too fast. You can read more about throttling in the article Throttling error.

Submit Cyrillic text message in UC S2 encoding from client to server

Let’s put some text containing Cyrillic symbols into “Text” field of “Inetlab.SMPP SmppClient Demo”– for example "это тестовое
sms". Choose UCS2 in dropdown menu “Data coding”. Press “Submit”. There should be a new record in the Log-field of
"Inetlab.SMPP SmppServer Demo" window:

[timestamp]: Info (SmppServerDemo) Client 127.0.0.1:53233 sends message From:MySMSService, To:436641234567, Text: это
тестовое sms[TRIAL] [timestamp]: Info (SmppServerDemo) SMS Received: это тестовое sms[TRIAL]

Message successfully delivered to the SMPP-server. Please note, if you keep the default value in “Data coding” dropdown, you will
see all Cyrillic symbols arrived to server as question marks.

You can read more about text encoding in the article Map Encoding.

What detailed log looks like?

Log-fields of client and server are populated with new information thanks to a Logger embedded in the Inetlab.SMPP library. The
embedded logger creates text records reflecting the meaning of current operations automatically. The default logging level is
"Info". For example, this is how Log-field of SMPP-client looks like when launched and connected to an SMPP-server (log level
"Info").

To change logging level it is necessary to change logging settings in the source code of SMPP-client and compile the project
again. For example, by setting "Verbose" level in logger settings (showing much more technical details when “Info”) you will get
more information in the logger output. Log-field will have additional records marked as “Verbose” and “Debug”.

You can read more logging and logging levels in the article Creating local and global Logger.

Send a message from server to client selected

There is a list of all SMPP-clients connected and their respective logins in the “Connected Clients” field of "Inetlab.SMPP
SmppServer Demo" window.

If you click a line containing client login (for example, “SystemId: login”) and the press "Send Message" button at the right side of
the window, you will be able to message the SMPP-client by filling a form.

Let’s fill the form with arbitrary information:

After filling all fields and pressing "Submit” button the message will be sent to the SMPP-client. By having a look at the Log-field
of SMPP-client application, we can confirm if the message received. The similar record should appear:

… [timestamp]: Info (SmppClientDemo) DeliverSm received : Sequence: 1, SourceAddress: 123, Coding: Default, Text: test
back[TRIAL] …

As next step you can begin to create your own SMPP Client or SMPP Server application.

SMPP Client
Creation of SMPP-client and Connect

Authentication (Bind)

Connection recovery

Create and send messages

Receive messages

Track message sending and delivery

Creating SMPP-client and Connect
You need to know the address and port of SMPP-server to establish connection to it. Let us create an instance of an SMPP-client
and proceed with asynchronous method ConnectAsync using server data as arguments.

SmppClient _client = new SmppClient();
bool connected = await _client.ConnectAsync("localhost", 7777);

This example illustrates how an SMPP-client connects local SMPP-server available at "localhost", port 7777. It is described in
according article how to create local SMPP-server.

Run the code inside the asynchronous method. After execution, the connected variable will receive information about operation
result (Boolean true/false).

In most cases the successful connect is followed by bind operation.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.ConnectAsync.html

Authentication (Bind)
The login and password issued by an SMPP-provider is required to pass authentication at SMPP-server.

Authentication to be performed after connection established successfully. Login and password transmitted to server with
asynchronous method BindAsync. In BindAsync method you can also specify ConnectionMode. When calling BindAsync the third
parameter (Connection Mode) is optional and, if not specified, by default it is Transceiver.

if (await _client.ConnectAsync("localhost", 7777))
{
 BindResp bindResp = await _client.BindAsync("Login", "Password", ConnectionMode.Transceiver);
}

Calls to methods ConnectAsync and BindAsync are to be accompanied with “await” operator. It guarantees getting to Bind
operation only after Connect was successful.

In the following example, variable bindResp contains the result of BindAsync execution, in particular the server response and
status.

if (bindResp.Header.Status == CommandStatus.ESME_ROK)
{
 _log.Info("Bound with SMPP server");
}

ESME_ROK status confirms successful execution of authentication command and means you can proceed with sending and/or
receiving messages. The SmppClient object will change its Status to Bound.

Read more about statuses in the article Sending Commands and Getting Responses.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.BindAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.BindAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.BindAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.ConnectionMode.html#Inetlab_SMPP_Common_ConnectionMode_Transceiver
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.ConnectAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.BindAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.BindAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_ROK
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.Status.html#Inetlab_SMPP_SmppClientBase_Status
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.ConnectionStatus.html#Inetlab_SMPP_Common_ConnectionStatus_Bound

Connection recovery
Connection recovery can be activated with ConnectionRecovery property.

SmppClient _client = new SmppClient();
_client.ConnectionRecovery = true;

This works only after first successful bind. SmppClient triggers following events by connection recovery:

event evRecoverySucceeded - when bind was successful.
event evDisconnected - when bind was failed.

Connection won't be recovered when you call directly the method client.Disconnect().

For the first successful bind you need to write a Connect method so that it repeats Connect and Bind until it receives status
ESME_ROK in BindResp.

The delay time between recovery attempts can be changed with the property ConnectionRecoveryDelay. Default is 2 minutes.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.ConnectionRecovery.html#Inetlab_SMPP_SmppClient_ConnectionRecovery
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evRecoverySucceeded.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.evDisconnected.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_ROK
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.BindResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.ConnectionRecoveryDelay.html#Inetlab_SMPP_SmppClient_ConnectionRecoveryDelay

Create and send messages
There are several ways to create a message. The most convenient way is by using helper class SMS:

IList<SubmitSm> pduList = SMS.ForSubmit().From("111").To("79171234567").Text("Hello World!").Create(_client);

This example will produce a collection pduList containing single short message. If the message is longer when 140 octets, it will
be automatically split to parts. All message parts are also placed into a collection IList<SubmitSm>. The mobile phone
automatically concatenates received message parts into a single longer message.

The library also provides a way to create SumitSm PDU manually:

public SubmitSm CreateSubmitSm()
{
 SubmitSm sm = new SubmitSm();
 sm.UserData.ShortMessage = _client.EncodingMapper.GetMessageBytes("Test Test Test Test Test Test Test
Test Test Test", DataCodings.Default);
 sm.SourceAddress = new SmeAddress("1111", AddressTON.NetworkSpecific, AddressNPI.Unknown);
 sm.DestinationAddress = new SmeAddress("79171234567", AddressTON.Unknown, AddressNPI.ISDN);
 sm.DataCoding = DataCodings.UCS2;
 sm.SMSCReceipt = SMSCDeliveryReceipt.SuccessOrFailure;

 return sm;
}

This method does not have support for long messages and splitting. However, when you need to create Inetlab.SMPP.PDU
messages and set properties not supported by SMS class this method is very useful.

Actual message transmission is performed by calling method SubmitAsync and passing either an argument of SubmitSm PDU
either arrays/collections using method overloads.

IEnumerable<SubmitSmResp> responses = await _client.SubmitAsync(pduList);

The SubmitAsync method supports batch sending. It is possible to send pduList containing thousands of PDUs by a single call to
SubmitAsync method. The method will return results after SmppClient have received server responses for all Inetlab.SMPP.PDU's
sent.

Please note, the order of SubmitSmResp in response collection may not match the order of PDUs in pduList collection. The
relation between commands sent and server responses may be established by resp.Header.Sequence property.

Successful processing of SubmitSm on server side produces server response containing status
response.Header.Status = ESME_ROK .

It is possible that several SubmitSmResp will produce a response with error status:

SMPPCLIENT_NOCONN - connection failed during sending attempt.
SMPPCLIENT_UNBOUND - you are probably trying to send commands via SmppClient without authentication (Bind).
SMPPCLIENT_RCVTIMEOUT - response to request is not arrived during certain time.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SMS.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSm
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SMS.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.SubmitAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.SubmitAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.SubmitAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_SMPPCLIENT_NOCONN
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_SMPPCLIENT_UNBOUND
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_SMPPCLIENT_RCVTIMEOUT

Receive messages
An SMPP-server sends SMS to SMPP-client by using command DeliverSm. It may contain inbound SMS as well as delivery report.

There is an event evDeliverSm in class SmppClient. The event rises on DeliverSm command arrival. Any method subscribed to
that event will receive information about inbound messages.

...

_client.evDeliverSm += OnDeliverSm;

...

private void OnDeliverSm(object o, DeliverSm deliverSm)
{
 if (deliverSm.MessageType == MessageTypes.SMSCDeliveryReceipt)
 {
 _log.Info("Delivery Receipt received");
 }
 else
 {
 _log.Info("Incoming SMS received");
 }
}

The InetLab.SMPP library allows to concatenate received parts of the long message into a single message the same way as mobile
phone does. The class MessageComposer is used for that.

If you do not receive inbound messages you may need to look for an answer in according Troubleshooting article.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_DeliverSm
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evDeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_DeliverSm
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html

Track message sending and delivery
Track sending
The SMPP-server generates unique MessageId for each SubmitSm PDU received from SMPP-client. In case of a multipart message
(long message split into parts) each part is assigned with unique MessageId generated by the server.

The client receives information about MessageId as PDU SubmitSmResp response from SMPP-server. The fact of issuing
MessageId for message/part means server accepted it for further processing. You can read more about ways of collecting server
responses SubmitSmResp in the article Create and sendmessasge.

Track delivery
During message creation it is necessary to set property "registered delivery" in order to get delivery reports after sending. The
field MessageId is present in each delivery report and matches MessageId of the original message/part send before. Matching of
delivery reports to original messages is possible by using MessageId and looking for identical values. This way is possible to track
delivery progress.

There is a simple handler for evDeliverSm event in the following example. It extracts MessageId and status from received delivery
report DeliverSm. The next thing to do is to search this MessageId in messages sent before.

...

_client.evDeliverSm += OnDeliverSmTracking;

...

private void OnDeliverSmTracking(object o, DeliverSm deliverSm)
{
 if (deliverSm.MessageType == MessageTypes.SMSCDeliveryReceipt)
 {
 _log.Info("Delivery Receipt received");

 string messageId = deliverSm.Receipt.MessageId;
 MessageState deliveryStatus = deliverSm.Receipt.State;
 }
}

Read more details about tracking message delivery status

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evDeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_DeliverSm

SMPP Server
Create an SMPP-server and Connect (with sample app)

Client authentication (Bind)

Keeping connection active (InactivityTimeout and EnquireLink)

Receive messages

Send messages

Deliver messages from sender to recipient

Implementing SMPP Gateway

Control SMPP responses

Create SMPP-server and Connect (with sample app)
The following minimal code structure creates SMPP-server:

SmppServer _server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777));
_server.Start();

First line prepares SMPP-server to be started at the port 7777. The second line actually starts the server and getting server ready
to accept connection requests from TCP/IP clients. The SMPP-server creates instance of SmppServerClient class and raises the
event evClientConnected for each TCP/IP client connected.

All clients connected are added automatically to the collection ConnectedClients of SmppServer object.

You may implement any preliminary checks in the event-handler subscribed to evClientConnected event. For example, you may
perform an IP-address check and disconnect “wrong” clients immediately.

Please explore the sample SMPP Server program at the link.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientConnected.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.ConnectedClients.html#Inetlab_SMPP_SmppServer_ConnectedClients
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientConnected.html
https://gitlab.com/inetlab/smpp-samples/-/blob/master/SmppServerDemo/SmppServerDemo.cs

Client authentication (Bind)
Each SMPP-client has to send Bind command to start working with SMPP-servers. Bind stands for authentication according to the
SMPP protocol. There must be an event-handler attached to evClientBind event to enable to bind-request processing by SMPP-
server. The event is raised each time SMPP-server receives Bind command:

_server.evClientBind += (sender, client, bindPdu) => {
 //process Bind PDU
};

By using an empty event-handler as in the example above you allow any SMPP-client authenticate on your server. If there is no
event-handler attached, the authentication will not succeed. Consequently, the SMPP-server will return response BindResp to the
SMPP-client containing ESME_RBINDFAIL status.

It is common to implement various authentication rules, login checks and other security checks in the event-handler subscribed to
evClientBind.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientBind.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.BindResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_RBINDFAIL
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientBind.html

Keeping connection active (InactivityTimeout and EnquireLink)
InactivityTimeout
To save server resources, it is useful to disconnect inactive clients. In general, inactive client is the one who neither sends neither
receives commands (messages).

There is a parameter InactivityTimeout with default value of 2 minutes for SmppServerClient instances. The SmppServer closes
connection to clients based on this timer. It is possible to disable InactivityTimeout by assigning it value TimeSpan.Zero.

Example of setting InactivityTimeout for 15 seconds once an SMPP-client is connected:

SmppServer _server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777));

_server.evClientConnected += (s, client) => {
 client.InactivityTimeout = TimeSpan.FromSeconds(15);
};

_server.Start();

InactivityTimeout is possible to set inside event-handler for evClientConnected event only.

EnquireLink
When there is no messages to send/receive but the connection has to be kept the EnquireLink command is engaged.

It is possible to perform an automatic connection check for SmppServerClient or SmppClient using property EnquireLinkInterval.
The EnquireLinkInterval is the inactivity time interval after which the command EnquireLink is sent automatically.

EnquireLink example:

SmppServer _server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777));
_server.Start();
_server.evClientBind += (s, client, bind) => {
 client.EnquireLinkInterval = TimeSpan.FromSeconds(15);
};

In that example, we configure the SmppServerClient instance to check connection each 15 seconds of SMPP-client inactivity. It is
possible to set EnquireLinkInterval in event-handlers for evClientConnected event or evClientBind event.

An automatic connection check is started only after successful Bind. Client without Bind considered inactive and will be
disconnected if InactivityTimeout was set.

Please note, values InactivityTimeout and EnquireLinkInterval are to be set for each instance of SmppServerClient created i.e. for
each client connected.

The event handler for event evClientDisconnected is called when client disconnects.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientConnected.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.EnquireLinkInterval.html#Inetlab_SMPP_SmppClientBase_EnquireLinkInterval
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.EnquireLinkInterval.html#Inetlab_SMPP_SmppClientBase_EnquireLinkInterval
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientConnected.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientBind.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.InactivityTimeout.html#Inetlab_SMPP_SmppServerClient_InactivityTimeout
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.EnquireLinkInterval.html#Inetlab_SMPP_SmppClientBase_EnquireLinkInterval
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientDisconnected.html

Receive messages
To receive messages it is necessary to create an event handler for evClientSubmitSm event. The evClientSubmitSm event is raised
each time packet with SubmitSm command arrives. The remote SMPP-client uses this command to send SMS to SMPP-server
(SMS Center).

_server.evClientSubmitSm += (sender, client, submitSm) => {
 // process SubmitSm PDU here
};

Even with an empty event handler attached, the SmppServerClient will automatically generate SubmitSmResp packet and put the
ESME_ROK status in submitSm.Response field. In addition, the unique identifier “MessageId” for each message/part received
will be created and placed into response packet. The event handler allows you to change submitSm.Response.MessageId or
any other property of SubmitSmResp object.

submitSm.Response.MessageId = "myUnuqueID";

If there is no event handler attached to evClientSubmitSm event, the server sends to client the response SubmitSmResp
containing status ESME_RSUBMITFAIL.

It is common to implement various rules for inbound messages (such as processing, saving, sending, storing, parts collecting, etc.)
inside the event handler attached to evClientSubmitSm event.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSm
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSmResp
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_ROK
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSmResp
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSmResp
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_RSUBMITFAIL
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html

Send messages
The SMPP-server creates SmppServerClient object automatically for each SMPP-client connected. Calling method DeliverAsync of
the SmppServerClient object sends a message to the respective SMPP-client.

To start, it is necessary to choose SmppServerClient instance from the list available at ConnectedClients property. You may use
any SmppServerClient properties as criteria for choosing the recipient/SMPP-client.

For example, let us crate arbitrary message at SMPP-server and send it to the SMPP-client. To choose a recipient SMPP-client
from the list we will use SystemID value (SMPP-client login). The message will be sent to the first client having SystemID
matching field "To" value of the message.

Assuming the SMPP-server already created, minimally configured and started and the server parameter will be passed to the
method, the sending method will be as follows:

public async Task SendSms(SmppServer _server)
{
 //prepare message data
 string sender = "123";
 string recipient = "456";
 string text = "hello!";

 //searching recepient by criteria
 SmppServerClient clientRecepient = _server.ConnectedClients.FirstOrDefault(c => c.SystemID == recipient);

 //creating message and sending
 if (clientRecepient != null)
 {
 IList<DeliverSm> textMessage =
SMS.ForDeliver().From(sender).To(recipient).Text(text).Create(clientRecepient);
 IEnumerable<DeliverSmResp> response = await clientRecepient.DeliverAsync(textMessage);
 }
}

To have a message sent in the example above, the SMPP-server must have an SMPP-client with SystemId “456” already
connected when method SendSms is called.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.DeliverAsync.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.ConnectedClients.html#Inetlab_SMPP_SmppServer_ConnectedClients
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html

Deliver messages from sender to recipient
By combining receive message and send message examples we can implement basic way to deliver messages from sender to
recipient via SMPP-server. Let’s make a method for receiving inbound messages from an SMPP-client, searching suitable
recipient among SMPP-clients connected and sending the message to it. For the sake of example, let us consider any SMPP-client
having SystemID (login) equal to message "To" field as "suitable".

static void Main(string[] args)
{
 LogManager.SetLoggerFactory(new ConsoleLogFactory(LogLevel.Verbose));

 SmppServer _server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777));

 _server.evClientBind += (s, c, p) => { }; //allow all to authenticate on the server
 _server.evClientSubmitSm += async (smppServer, smppServerClient, submitSm) => await
ForwardSms(smppServer, smppServerClient, submitSm);

 _server.Start();

 Console.ReadLine();
}

static async Task ForwardSms(object smppServer, SmppServerClient smppServerClient, SubmitSm submitSm)
{
 SmppServer _server = (SmppServer)smppServer;

 //prepare message
 string fromField = submitSm.SourceAddress.ToString();
 string toField = submitSm.DestinationAddress.ToString();
 string textField = submitSm.GetMessageText(smppServerClient.EncodingMapper);

 //search recepient
 SmppServerClient clientRecepient = _server.ConnectedClients.FirstOrDefault(c => c.SystemID == toField);

 //send
 if (clientRecepient != null)
 {
 IList<DeliverSm> textMessage =
SMS.ForDeliver().From(fromField).To(toField).Text(textField).Create(clientRecepient);
 var result = await clientRecepient.DeliverAsync(textMessage);
 }
}

There is an event handler created and named “ForwardSms”. It is subscribed to evClientSubmitSm event, responsible for inbound
messages. The event handler is getting the inbound message as a third argument (submitSm) and prepares it for sending further.
In addition, it picks the suitable recipient out of the list of SMPP-clients connected (ConnectedClients property) and forwards
message to it.

To test the setup, connect two SMPP-clients (sender and recipient) to this SMPP-server. Sender login is not important, but for
recipient login use “client002”. Now send a message from the first SMPP-client and put “client002” in the “Destination (To)” field.
The message should arrive to client with login “client002”. It will work even if you have only one SMPP-client connected but "To"
field contains its login. Of course, the way of choosing the recipient is totally up to the developer.

Using a similar approach it is possible to implement the SMPP Gateway for forwarding messages via SMPP-client connected to
another SMPP-server.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.ConnectedClients.html#Inetlab_SMPP_SmppServer_ConnectedClients

Implementing SMPP Gateway (with sample app)
When you resell SMPP traffic you need to implement SMPP Gateway or SMPP Proxy.

Please note the SMPP Gateway sample program is available at the link.

Such application should start at least one SmppServer to be able to receive SMPP commands on a TCP port and several
SmppClient instances to send message to other SMPP servers (SMSC, Provider).

When a customer sends SubmitSm command to your server, you need to send back a response SubmitSmResp with assigned
MessageId. Later, when you forward this message to another server, you will receive another MessageId from SMSC.

This SMSC MessageId should also be replaced in DeliverSm (Receipt) for the target client.

You might want to implement smart routing for incoming messages. F.i. when you are going to forward SMS message you can
estimate which SmppClient connection accepts destination phone number and costs less.

When you need only forward SubmitSm messages I suggest following steps:

Receive SubmitSm from the client.
Save client's Sequence number to the database. Possible good idea to save entire PDU.
Send SubmitSmResp to client with his Sequence number and MessageId generated on your server side.
In another process/thread send this SubmitSm PDU to some SMPP provider.
Change SubmitSm Sequence number to the next sequence number for the SmppClient that connected to that SMPP
provider.
Receive Provider's MessageId in SubmitSmResp
Store Provider's MessageId and Sequence number to the same database table as for client's Sequence number.

These four values help later to find a corresponding client that should receive a delivery receipt from the provider:

Client's sequence number
Client's MessageId
Provider's sequence number
Provider's MessageId

When DeliverSm comes from the provider and contains "DeliveryReceipt", you should do the following steps:

Get Provider's MessageId from delivery Receipt.
Find client's MessageId and corresponding SMPP user.
Replace Provider's MessageId in DeliverSm PDU with client's MessageId
Send "DeliveryReceipt" to the SmppServerClient that belongs to SMPP user.
If there is no active connection with the client, place DeliverSm PDU to the outgoing persistent queue (another database
table) and send it when the client connects.

Example of forwarding message from one client to another is on the page "Message delivery from sender to recipient"

https://gitlab.com/inetlab/smpp-samples/-/blob/master/SmppGatewayDemo/Program.cs
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.MessageId.html#Inetlab_SMPP_Common_Receipt_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.MessageId.html#Inetlab_SMPP_Common_Receipt_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html

Control SMPP responses
By default, the InetLab SMPP-server dispatches SubmitSmResp commands automatically one by one after each
evClientSubmitSm event handled. You may want to override this flow in order to process, save or prepare responses in a more
controllable way. For example, you may like saving data to SQL in bulk instead of single “per message” transactions. Also, you
may like to control the moment when responses are sent to the client.

Automatic response sending can be prevented in an event handler by changing Response field to null:

void onSubmitSm(object sender, SmppServerClient client, SubmitSm submitSm)
{
 SubmitSmResp generatedResp = submitSm.Response;

 //preventing response automated return
 submitSm.Response = null;

 //custom routine for the response
 Task handleTask = HandleRequestAsync(submitSm);
}

private async Task HandleRequestAsync(SubmitSm submitSm)
{
 //Generating and sending response manually
 SmppServerClient client = submitSm.Client as SmppServerClient;
 var response = new SubmitSmResp(submitSm);
 await client.SendResponseAsync(response);
}

In the example above, we prevent auto-response by setting submitSm.Response field to null. Then we call a method and supply it
with SubmitSm data. The method generates and submits a response to the client.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSmResp
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSm

Troubleshooting
Common Mistakes

Connection Lost

Throttling Error

Built-in Logging

Tuning

Diagnostic

Wireshark

Common Mistakes
Incoming messages not received
Possible reasons why you don't receive incoming messages

SMPP account doesn't have right to receive SMS messages.
Wrong SMS routing configuration on SMPP server.
SMPP client has been bound as Transmitter.
SMPP client was not attached to evDeliverSm event handler.
SMPP account is used in two or more applications. SMSC sends messages to application where DeliverSm is not expected.

Wrong message text encoding
Please clarify with SMPP provider which encoding (character set) is expected for DataCodings value.

Read more about encoding on page "Mapping DataCodings to .NET Encoding".

Message concatenation does not work
Please ask your SMPP provider which type of concatenation is supported.

Read more about contatenation on page "Concatenation".

Library version was changed
If you observe plenty of syntax errors or command syntax changes, probably you are using outdated library version. Otherwise
you might have library updated but using older version codebase.

Read more on page "Migration from v1.x to 2.x".

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html

Lost of Connection
General Case
Lost of connection can be caused by :

Router crash/reboot. Any of the routers along the route from one side to the other may crash or be rebooted; this causes a
loss of connection if data is being sent at that time. If no data is being sent at that exact time, then the connection is not lost.
Network cable is unplugged. Any network cables unplugged along the route from one side to the other will cause a loss of
connection without any notification.

Lost of connection in Inetlab.SMPP library is detected within ENQUIRE_LINK request or when any other SMPP PDU is being sent. It
can happen that a client detects disconnection earlier than a server. If the server is configured to allow only one connection for an
SMPP account it may reject the subsequent bind requests by responding with BIND_RESP and status ESME_RALYBND. Once the
server detects connection staled, it accepts the bind request again.

If you face such situation in your application you need to reconnect to the SMPP provider in 1-5 Minutes. Inetlab.SMPP library
also provides connection recovery feature for SmppClient.

Also please be aware of SmppServer timeout settings.

SMPPCLIENT_NOCONN Status
The SmppResponse with status SMPPCLIENT_NOCONN comes after an unsuccessful attempt to send SMPP-command. Basically,
it means there is no connection to the server. This may happen for the number of reasons (for example, if TLS versions do not
match) and at various stages (before/after Connect, before/after Bind, during sending). If this is happening constantly and often,
you should try to find what causes it in the first instance.

To continue normal operation, you should reestablish connection with the server and resend all SubmitSm with a new sequence
number. The sequence number can be generated automatically when you set submtitSm.Header.Sequence = 0 or you can
generate it manually with the code:

submitSm.Header.Sequence = _client.SequenceGenerator.NextSequenceNumber();

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_SMPPCLIENT_NOCONN

Throttling error
SMSC can limit number of submitted PDU for SMPP account. When allowed message limit is exceeded, server returns status
ESME_RTHROTTLED.

To avoid throttling error you can specify a number of messages per second in SmppClient. For this purpose you can define
SendSpeedLimit property.

//Send 10 messages per second
_client.SendSpeedLimit = 10;

//Send 1 message every 5 seconds
_client.SendSpeedLimit = 1f / 5f;

//Send 100 message every 1 minute
_client.SendSpeedLimit = new LimitRate(100, TimeSpan.FromMinutes(1));

//Disable send speed limit
_client.SendSpeedLimit = LimitRate.NoLimit;

Please note that speed limit works properly only on release version without attached debugger.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_RTHROTTLED
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.SendSpeedLimit.html#Inetlab_SMPP_SmppClientBase_SendSpeedLimit

Built-in Logging
Logging is a universal approach to detecting problems and debugging your software.

Inetlab.SMPP library provides build-in logging functionality based on ILog and ILogFactory interfaces. You can implement this
interface with any kind of logging framework for your solution.

For example:

NLog
Log4Net

The library provides ConsoleLogFactory and FileLogFactory classes.

When the application starts you need to register global ILogFactory for the library.

LogManager.SetLoggerFactory(new ConsoleLogFactory(LogLevel.Info));

or you can set Logger property when you create instances of SmppClient, SmppServerClient or SmppServer

LogManager.SetLoggerFactory(new ConsoleLogFactory(LogLevel.Info));

The library writes received and sent packet bytes in the log when you enable Verbose log level. It can help us to analyze SMPP
packets transferred between client and server.

Implementation example for ILog and ILogFactory interfaces:

public class ConsoleLogFactory : ILogFactory
{
 private LogLevel _minLevel;

 public ConsoleLogFactory(LogLevel minLevel)
 {
 _minLevel = minLevel;
 }

 public ILog GetLogger(string loggerName)
 {
 return new ConsoleLogger(loggerName, _minLevel);
 }
}

public class ConsoleLogger : ILog
{
 private readonly LogLevel _minLevel;

 public string Name { get; private set; }

 public ConsoleLogger(string loggerName, LogLevel minLevel)
 {
 Name = loggerName;
 _minLevel = minLevel;
 }

 public bool IsEnabled(LogLevel level)
 {
 return level >= _minLevel;
 }

 public void Write(LogLevel level, string message, Exception ex, params object[] args)
 {
 if (level < _minLevel) return;

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ILog.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ILogFactory.html
http://nlog-project.org
http://logging.apache.org/log4net/release/features.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ConsoleLogFactory.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.FileLogFactory.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ILogFactory.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.Logger.html#Inetlab_SMPP_SmppClientBase_Logger
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ILog.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.ILogFactory.html

 int threadId = Environment.CurrentManagedThreadId;

 string text = message;

 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0:dd.MM.yyyy HH:mm:ss}:{1}:{2,3}: ({3}) ", DateTime.Now, GetLevelString(level),
threadId, Name);
 sb.AppendFormat(message, args);
 if (ex != null)
 {
 sb.Append(" Exception: ");
 sb.Append(ex.ToString());
 }

 Console.WriteLine(sb.ToString());

 }

 private string GetLevelString(LogLevel level)
 {
 switch (level)
 {
 case LogLevel.Fatal:
 return "FATAL";

 case LogLevel.Error:
 return "ERROR";

 case LogLevel.Warning:
 return "WARN ";

 case LogLevel.Info:
 return "INFO ";

 case LogLevel.Debug:
 return "DEBUG";

 case LogLevel.Verbose:
 return "TRACE";

 }

 return "";
 }

}

Read more about Logging at page "Creating global and local logger".

Diagnostic
Metrics
To monitor SmppClient or SmppServerClient performance you can use Metrics property. It contains many useful values
calculated automatically.

The ISmppClientMetrics type of the Metrics property has the following structure:

Sent - Gets the metrics for messages sent.
InQueue - Number of messages stored in the queue (awaiting to be sent).
Total - Total number of messages sent.
Requests

Total - Total number of requests sent.
PerSecond - Transferring speed for the last second. Messages per second.
AvgPerSecond - Average speed since last Reset. Messages per second.
WaitingForResponse - Gets number of request PDUs that didn't receive a response with the same sequence
number.

Responses
Total - Total number of responses sent.
PerSecond - Transferring speed for the last second. Messages per second.
AvgPerSecond - Average speed since last Reset. Messages per second.

Received - Gets the metrics for messages received.
InQueue - Number of messages stored in the queue (received but not processed in the worker threads).
Total - Total number of messages received.
Requests

Total - Total number of requests received.
PerSecond - Transferring speed for the last second. Messages per second.
AvgPerSecond - Average speed since last Reset. Messages per second.
WaitingForResponse - Number of received requests that didn't processed by the application.

Responses
Total - Total number of responses received.
PerSecond - Transferring speed for the last second. Messages per second.
AvgPerSecond - Average speed since last Reset. Messages per second.

All properties in the metrics objects are constantly changed during message transferring. If you want to fix the metric's value for
further analysis, you can use the method Snapshot().

var clientMetrics = _client.Metrics.Snapshot();

This method copies all current values to new metrics object where the values won't change anymore. The same Snapshot method
is also available for child properties, for example:

var requestMetrics = clientMetrics.Sent.Requests.Snapshot();

or

var responseMetrics = clientMetrics.Received.Responses.Snapshot();

You can also use Reset() method for the cases when you need to analyze some part of the process and begin to watch values
from zero. The Reset() method is also available for each child metric object.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServerClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.Metrics.html#Inetlab_SMPP_SmppClientBase_Metrics
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Metrics.ISmppClientMetrics.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.Metrics.html#Inetlab_SMPP_SmppClientBase_Metrics

// start sent requests metrics from zero
_client.Metrics.Sent.Requests.Reset();

//send a batch of messages
var responses = await _client.SubmitAsync(batch);

//take snapshot of metrics values
var sentRequests = _client.Metrics.Sent.Requests.Snapshot();

// display metrics values as string
string performance = sentRequests.ToString();

Special events
You can use special events in base class SmppClientBase for tracking PDUs:

with the event evPduReceiving you can monitor all incoming PDUs.
event evPduSending is invoked before sending the PDU to network.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.evPduReceiving.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.evPduSending.html

Tuning
Threading
Library creates for each connected client 3 worker threads that handle received request PDUs and call corresponding event
handlers, f.i. evSubmitSm, evDeliverSm.

You can increase the number of worker threads for each client.

var scheduler = _client.ReceiveTaskScheduler as WorkersTaskScheduler;
if (scheduler != null)
 scheduler.WorkerCount = 10;

When your application establishes a lot of SMPP sessions, you may want to create a global task scheduler and set required
number of worker threads for the process.

var scheduler = new WorkersTaskScheduler(100);

You need then assign this scheduler to the client. It is your responsibility to dispose the scheduler instance.

Before SmppClient connects to remote host.

client.ReceiveTaskScheduler = scheduler;

For the SmppServer when client connects.

public void server_evClientConnected(object sender, SmppServerClient client)
{
 client.ReceiveTaskScheduler = _scheduler;
}

TaskScheduler.Default can be used as well. In this case all event handlers for received requests will be scheduled to ThreadPool.

_client.ReceiveTaskScheduler = TaskScheduler.Default;

Networking
To reduce number of calls to network adapter and increase transfering speed, you can change receive or send buffer size for the
TCP socket:

_client.ReceiveBufferSize = 32 * 1024 * 1024;
_client.SendBufferSize = 32 * 1024 * 1024;

A larger buffer size might delay the recognition of connection difficulties. Consider increasing the buffer size if you are using a
high bandwidth, high latency connection (such as a satellite broadband provider).

Memory
Memory consumption for a client can be reduced if you limit the number of requests received from the client but not processed
by the application.

_client.ReceivedRequestQueueLimit = 1000;

If a client sends PDUs too fast, the library stops reading from network until a free slot is available in the receive queue. This is

commonly referred to as "flow control" or "back pressure". This is also affects the responses sent by the client. They won't be read
from network because of reading delay.

The number of request waiting for response from remote side can be also limited with the code

_client.SendQueueLimit = 1000;

The incomplete request objects consume memory of the running process. This property helps to reduce memory consumption
and prevent unsuccess responses. When remote side cannot process messages fast enough, number of sent messages may
exceed queue limit (ESME_RMSGQFUL). When this property is defined the sending to network will be delayed until the queue has
a free slot (remote side has sent a response).

Wireshark
The best way to analyze SMPP Protocol is to capture network traffic with Wireshark tool.

SMPP related Wiki article is here.

http://www.wireshark.org/
https://wiki.wireshark.org/SMPP

FAQ
SMPP Cient

Sending Commands and Getting Responses

Concatenation

SMPP Connection Mode

Deivery Receipt

EnquireLink

How to install the license file

Logging

Map Encoding

Message Composer

Performance (with sample app)

SMPP Server (with sample app)

SMPP Address

SSL/TLS Connection

SubmitMulti. Send message to multiple destinations

MMS notifications

WAP Push

Implementing USSD (Unstructured Supplementary Service Data)

SMPP Client FAQ
Can library split text into multiple concatenated SMS-parts?
Text will be split automatically when you use SMS builders. Following example covers most of usage scenarios

public static async Task SendLongText(SmppClient client)
{
 string longText = new string('A', 300);

 var resp = await client.SubmitAsync(
 SMS.ForSubmit()
 .From("short_code")
 .To("436641234567")
 .Coding(DataCodings.UCS2)
 .Text(longText)
);
}

How can I send Flash SMS?
In order to send Flash SMS you need to specify one of the following data coding in the SubmitSm class: UnicodeFlashSMS,
DefaultFlashSMS

How can I set sequence number before sending PDU
SMS Builder has Create method that returns SubmitSm list with sequence numbers set to 0.

You can assign the next number from the SequenceGenerator and pass this PDU list to Submit(SubmitSm[]) method.

IList<SubmitSm> pduList = SMS.ForSubmit()
 .From("5555")
 .To("436641234567")
 .Text("test text")
 .Create(client);

foreach (SubmitSm pdu in pduList)
{
 pdu.Header.Sequence = client.SequenceGenerator.NextSequenceNumber();
}

var resp = await client.SubmitAsync(pduList);

Example: Read messages from a database and send them as fast as
possible

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html#Inetlab_SMPP_Common_DataCodings_UnicodeFlashSMS
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html#Inetlab_SMPP_Common_DataCodings_DefaultFlashSMS
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SMS.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Builders.IBuilder-1.Create.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.SequenceGenerator.html#Inetlab_SMPP_SmppClientBase_SequenceGenerator
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.Submit.html#Inetlab_SMPP_SmppClient_Submit_Inetlab_SMPP_PDU_SubmitSm___

public class SMSMessage
{
 public string PhoneNumber { get; set; }
 public string Text { get; set; }
}

public static async Task SendMessageBatchAsFastAsPossible(SmppClient client)
{

 var messageList = GetNext100UnsentMessages();

 List<SubmitSm> pduList = new List<SubmitSm>();
 foreach (var message in messageList)
 {
 var pduBuilder = SMS.ForSubmit()
 .From("5555")
 .To(message.PhoneNumber)
 .Text(message.Text);

 pduList.AddRange(pduBuilder.Create(client));
 }

 SubmitSmResp[] resp = await client.SubmitAsync(pduList.ToArray());
}

private static IEnumerable<SMSMessage> GetNext100UnsentMessages()
{
 for (int i = 0; i < 100; i++)
 {
 yield return new SMSMessage
 {
 PhoneNumber = (436641234567+i).ToString(),
 Text = $"Test {i}"
 };
 }
}

How to create SubmitMulti PDUs for multiply recipients

var pduBuilder = SMS.ForSubmitMulti()
 .ServiceType("test")
 .Text("Test Test")
 .From("MyService");

foreach (string phoneNumber in phoneNumbers)
{
 pduBuilder.To(phoneNumber);
}

Sending Commands and Getting Responses
SMPP is based on the exchange of request and response protocol data units (PDUs) between the SMPP-client (ESME) and the
SMPP-server (SMSC) over an underlying TCP/IP network connection.

The SMPP protocol defines:

a set of operations and associated Protocol Data Units (PDUs) for the exchange of short messages between an SMPP-client
and an SMPP-server
the data that an SMPP-client application can exchange with an SMPP-server during SMPP operations

Sending Commands
The SMPP-client is ready to exchange commands with SMPP-server right after establishing connection and successful bind
(authentication).

All commands and responses are transmitted as PDUs. The command name is specified in the PDU header.

For example, the command SubmitSm serves for sending messages from SMPP-client to an SMPP-server and DeliverSm
command serves for sending messages from SMPP-server to SMPP-client. There are commands for authentication, binary data
transmission and many more described in the SMPP protocol specification.

When you call a method, the Inetlab.SMPP library automatically forms PDUs with respective SMPP-commands and other data
inside. If needed, devlopers can form any PDU manually.

Getting Responses
Command responses contain important information. By analyzing responses you can figure out if SMPP-server accepted the
message for delivery, is there a connection active, was authentication successful and other.

Please note: Every SMPP operation must consist of a request PDU and associated response PDU. The receiving entity must return
the associated SMPP response to an SMPP PDU request.

Concatenation
The GSM standard defines a maximum of 140 octets for a single short message and thus does not support the transmission of
more than these 140 octets per message. Therefore, a receiving SMSC will usually not accept a submit operation which will result
in a short message of >140 octets, unless it has implemented an automatic concatenation mechanism, which divides a long
message in multiple parts of 140 octets.

Various SMPP providers support various concatenation ways. Inetlab.SMPP library supports 3 ways:

1) message text in the field short_message and concatenation parameters in user data header

SMS Builder class uses this type of concatenation by default. Example how to submit SubmitSm PDUs:

public async Task SendConcatenatedMessageInUDH(TextMessage message)
{
 var builder = SMS.ForSubmit()
 .From(_config.ShortCode, AddressTON.NetworkSpecific, AddressNPI.Unknown)
 .To(message.PhoneNumber)
 .Text(message.Text);

 var resp = await _client.SubmitAsync(builder);
}

Example how to get concatenation parameters from PDU user data header:

public Concatenation GetConcatenationFromUDH(SubmitSm data)
{
 ConcatenatedShortMessages8bit udh8 = data.UserData.Headers.Of<ConcatenatedShortMessages8bit>
().FirstOrDefault();

 if (udh8 == null) return null;

 return new Concatenation(udh8.ReferenceNumber, udh8.Total, udh8.SequenceNumber);
}

Example how you can manually create SubmitSm instance, that contains only one message part with concatenation parameters in
the user data header:

public SubmitSm CreateSumbitSmWithConcatenationInUDH(ushort referenceNumber, byte totalParts, byte
partNumber, string textSegment)
{

 SubmitSm sm = new SubmitSm();
 sm.SourceAddress = new SmeAddress("1111");
 sm.DestinationAddress = new SmeAddress("79171234567");
 sm.DataCoding = DataCodings.Default;
 sm.RegisteredDelivery = 1;
 sm.UserData.ShortMessage = _client.EncodingMapper.GetMessageBytes(textSegment, sm.DataCoding);

 sm.UserData.Headers.Add(new ConcatenatedShortMessage16bit(referenceNumber, totalParts, partNumber));

 return sm;
}

2) message text in the field short_message and concatenation parameters in SAR TLV parameters (sar_msg_ref_num,
sar_total_segments, sar_segment_seqnum, more_messages_to_send)

Example how to create SubmitSm instances with SMS Builder:

var builder = SMS.ForSubmit()
 .From(_config.ShortCode, AddressTON.NetworkSpecific, AddressNPI.Unknown)
 .To(message.PhoneNumber)
 .Text(message.Text);

builder.Concatenation(ConcatenationType.SAR);

var resp = await _client.SubmitAsync(builder);

Example how to get concatenation parameters from TLV Parameters:

public Concatenation GetConcatenationFromTLVOptions(SubmitSm data)
{
 ushort refNumber = 0;
 byte total = 0;
 byte seqNum = 0;

 var referenceNumber = data.Parameters.Of<SARReferenceNumberParamter>().FirstOrDefault();
 if (referenceNumber != null)
 {
 refNumber = referenceNumber.ReferenceNumber;
 }
 var totalSegments = data.Parameters.Of<SARTotalSegmentsParameter>().FirstOrDefault();
 if (totalSegments != null)
 {
 total = totalSegments.TotalSegments;
 }
 var sequenceNumber = data.Parameters.Of<SARSequenceNumberParameter>().FirstOrDefault();
 if (sequenceNumber != null)
 {
 seqNum = sequenceNumber.SequenceNumber;
 }

 return new Concatenation(refNumber, total, seqNum);
}

3) message text in the TLV parameter message_payload and concatenation parameters in SAR TLV parameters

Example how to create SubmitSm instances with SMS Builder:

var builder = SMS.ForSubmit()
 .From(_config.ShortCode, AddressTON.NetworkSpecific, AddressNPI.Unknown)
 .To(message.PhoneNumber)
 .Text(message.Text);

builder.MessageInPayload();

var resp = await _client.SubmitAsync(builder);

SMPP Connection Mode
The SMPP connection mode is to be specified by an SMPP-client when attempting to authenticate at SMPP-server i.e. when
performing bind. It defines basic data exchange rule between client and server.

There are 3 SMPP connection modes available:

Transmitter - allows only to send SMPP commands to the SMSC and receive corresponding SMPP responses from the
SMSC.
Receiver - allows only to receive SMPP commands from SMSC and send corresponding SMPP responses.
Transceiver - allows to send and receive SMPP commands in SMSC.

Example of specifying the connection type by SMPP-client.

Delivery Receipt
Receipt format
Often you want to get delivery status for an SMS message. SMPP protocol provides the ability to request a delivery receipt in PDU
submitted. There are two ways how you can do it with the InetLab.SMPP library.

submitSm.RegisteredDelivery = 1;
// or
submitSm.SMSCReceipt = SMSCDeliveryReceipt.SuccessOrFailure;

or

var resp = await client.SubmitAsync(
 SMS.ForSubmit()
 .From("short_code")
 .To("436641234567")
 .DeliveryReceipt()
 .Text("test text")
);

As a result the SMPP-server will deliver the receipt to the client application. On the client side it can be received using
evDeliverSm event. Delivery receipt format is SMSC vendor specific, but typical format is

id:IIIIIIIIII sub:SSS dlvrd:DDD submit date:YYMMDDhhmm done date:YYMMDDhhmm stat:DDDDDDD err:E Text:
. . .

This text format is represented in the library as Receipt class.

It has the following properties:

MessageId - The message ID allocated to the message by the SMSC when originally submitted. You can get it from
SubmitSmResp or SubmitMultiResp.

Submitted - Number of short messages originally submitted. This is only relevant when the original message was submitted to a
distribution list within SubmitMulti.

Delivered - Number of short messages delivered to a distribution list with SubmitMulti.

SubmitDate - The time and date at which the short message was submitted.

DoneDate - The time and date at which the short message reached its final state.

ErrorCode - Network specific error code or an SMSC error code for the attempted delivery of the message.

Text - The first 20 characters of the short message.

State - The final status of the message. The value could be one of the following:

S TATE D ES CR IPTION

Delivered Message is delivered to the destination

Expired Message validity period has expired

Deleted Message has been deleted

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evDeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMultiResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html

Undeliverable Message is undeliverable

Accepted Message is in accepted state (i.e. has been manually read on behalf of the subscriber by customer service)

Unknown Message is in invalid state

Rejected Message is in a rejected state

S TATE D ES CR IPTION

� N o t e

Library sends DeliverSmResp with status ESME_RX_T_APPN to SMPP server when evDeliverSm event handler method throws an
exception.

How to tie submitted message with delivery receipt
SMS message in SMPP protocol is actually represented as one or many PDUs. When text is longer that 140 octets library sends
text as concatenated SMS parts (PDU). One part can be represented as SubmitSm class or SubmitMulti class.

Before sending SubmitSm or SubmitMulti PDU you need to assign Sequence number to it.

public async Task SendMessage(TextMessage message)
{
 IList<SubmitSm> list = SMS.ForSubmit()
 .From(_config.ShortCode)
 .To(message.PhoneNumber)
 .Text(message.Text)
 .DeliveryReceipt()
 .Create(_client);

 foreach (SubmitSm sm in list)
 {
 sm.Header.Sequence = _client.SequenceGenerator.NextSequenceNumber();
 _clientMessageStore.SaveSequence(message.Id, sm.Header.Sequence);
 }

 var responses = await _client.SubmitAsync(list);

 foreach (SubmitSmResp resp in responses)
 {
 _clientMessageStore.SaveMessageId(message.Id, resp.MessageId);
 }
}

At the same time you need to store Sequence in the database. For one message.Id you need to store several Sequence.

In response to SubmitSm PDU your application receives SubmitSmResp PDU. This response has the same Sequence number and
MessageId generated by the server.

When you receive a delivery receipt in the event evDeliverSm, the server sends same MessageId which you can use for updating
status of the submitted SMS text.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_RX_T_APPN
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evDeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.SmppHeader.Sequence.html#Inetlab_SMPP_Common_SmppHeader_Sequence
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSmResp.MessageId.html#Inetlab_SMPP_PDU_SubmitSmResp_MessageId
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.evDeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.Receipt.MessageId.html#Inetlab_SMPP_Common_Receipt_MessageId

private void ClientOnEvDeliverSm(object sender, DeliverSm data)
{
 if (data.MessageType == MessageTypes.SMSCDeliveryReceipt)
 {
 _clientMessageStore.UpdateMessageStatus(data.Receipt.MessageId, data.Receipt.State);
 }
}

SMS Text considered as delivered when all sms parts are in Delivered state.

For this purpose you can create 2 tables in the database.

1) outgoing_messages for all outgoing SMS messages

NAME D ES CR IPTION

messageId id of the message

messageText long message text

2) outgoing_message_parts for all PDUs generated for each message

NAME D ES CR IPTION

messageId reference to messageId field in the outgoing_messages

sessionId any unique id generated when SmppClient connects to the server. sequenceNumber is unique only in one SMPP
session.

sequenceNumber number generated before sending PDU

serverMessageId message id received from the server.

status status received in the delivery receipt

Reade more on page "Track message sending and delivery"

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageState.html#Inetlab_SMPP_Common_MessageState_Delivered

Enquire Link
EnquireLink is SMPP command allowing to check communication between ESME and SMSC.

The command can be sent by both client and server.

The EnquireLink mechanism assumes sending special SMPP-request by one of the peers obtaining the proper response. When
proper response is received with ESME_ROK status, the connection is considered active. Otherwise, if there is wrong response or
no response at all - the connection is to be closed.

To enable periodical connecton check, you need to set the following property:

client.EnquireLinkInterval = TimeSpan.FromSeconds(30);

EnquireLinkInterval specifies the time to wait after the last PDU exchange before sending the command. EnquireLink request
won't be sent when client and server are sending PDUs.

Read more on page Keeping connection active (InactivityTimeout and EnquireLink)

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.EnquireLink.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_ROK
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClientBase.EnquireLinkInterval.html#Inetlab_SMPP_SmppClientBase_EnquireLinkInterval
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.EnquireLink.html

How to install the license file
After purchase of developer license you should receive Inetlab.SMPP.license file per E-Mail. Also, you can always generate a
license file with your InetLab Account. It allows for Source Code license owners to add and update NuGet package in their
projects.

From Embedded Resources
Add this file into the root of a project where you have a reference on Inetlab.SMPP.dll. Change "Build Action" of the file to
"Embedded Resource".

Set license before using Inetlab.SMPP classes in your code:

Inetlab.SMPP.LicenseManager.SetLicense(this.GetType().Assembly.GetManifestResourceStream(this.GetType(),
"Inetlab.SMPP.license"));

From string variable
Open your license file with any text editor and copy and paste the content into the string variable in your code. Set license before
using Inetlab.SMPP classes in your code:

 string licenseContent = @"
-----BEGIN INETLAB LICENSE------
EBAXG23FO4BR23LJMNAGCZLMFZQXG23F
GY4DEMJTG43DGBMAQFD4DPHQ2UEANACB
BY5I4D6XBCAACRUJXKZKI7K2N76CTXSC
NDJP2CIM4KHV5V7VCXT75R4XRDSLZZQS
2NKD6JHCIG4PNPUN5A7G4KRZQSZSNL44
NB2LTYRP5FATRVKCHD26FC64E2TSQFX5
Q6GWNF3HVVQIE2YKOO74C4FVR6HDUGD6
FYO4DHCPCPQ2GY3WQRMOFOXOZQ======
-----END INETLAB LICENSE--------";

 Inetlab.SMPP.LicenseManager.SetLicense(licenseContent);

https://account.inetlab.com
https://www.nuget.org/packages/Inetlab.SMPP

Creating a global and local logger
You can turn on globall logging to analyze operations performed by the InetLab.SMPP library.

LogManager.SetLoggerFactory(new ConsoleLogFactory(LogLevel.Debug));

It creates the global (available to other instances) logger and specifies logging mode at the Debug level. After that operation, all
logging records associated with logging level Debug and less, will be echoed into the console.

Logging depth is defined by the following LogLevel values (by decreasing of outputted information amount):

LogLevel.All
LogLevel.Verbose
LogLevel.Debug
LogLevel.Info
LogLevel.Warning
LogLevel.Error
LogLevel.Fatal
LogLevel.Off

You can get a logger instance from any method and output your own records into it as well:

ILog log = LogManager.GetLogger("MyLogger");
log.Info("Connected to SMPP server");

As a result, it will output "Connected to SMPP server" into the log/console and mark it as LogLevel.Info.

To log a single instance you need to create logger and specify it as an instance parameter. For example, you can specify an
individual (local) logger for SmppClient instance:

ConsoleLogger _log = new ConsoleLogger("MyClientLogger", LogLevel.Info);
SmppClient smppClient = new SmppClient();
smppClient.Logger = _log;

This makes logger _log to output data from the related instance only.

Read more about logging on "Common Tools: Built-in Logging" page.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.LogLevel.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Logging.LogLevel.html#Inetlab_SMPP_Logging_LogLevel_Info
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html

Mapping DataCodings to .NET Encoding
For each SmppClient instance, you can define which Encoding will be used for specified DataCodings.

//Set GSM Packed Encoding for data_coding Latin1 (0x3)
client.EncodingMapper.MapEncoding(DataCodings.Latin1, new Inetlab.SMPP.Encodings.GSMPackedEncoding());

By default SmppClient has the following DataCodings to Encoding mappings:

mapper.MapEncoding(DataCodings.Default, new Inetlab.SMPP.Encodings.GSMEncoding());

mapper.MapEncoding(DataCodings.Class0FlashMessage, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class1MEMessage, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class2SIMMessage, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class3TEMessage, new Inetlab.SMPP.Encodings.GSMEncoding());

mapper.MapEncoding(DataCodings.Class0, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class1, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class2, new Inetlab.SMPP.Encodings.GSMEncoding());
mapper.MapEncoding(DataCodings.Class3, new Inetlab.SMPP.Encodings.GSMEncoding());

mapper.MapEncoding(DataCodings.UCS2, Encoding.BigEndianUnicode);
mapper.MapEncoding(DataCodings.Class1MEMessageUCS2, Encoding.BigEndianUnicode);
mapper.MapEncoding(DataCodings.Class2SIMMessageUCS2, Encoding.BigEndianUnicode);
mapper.MapEncoding(DataCodings.Class3TEMessageUCS2, Encoding.BigEndianUnicode);
mapper.MapEncoding(DataCodings.UnicodeFlashSMS, Encoding.BigEndianUnicode);

� N o t e

Before changing mapping settings, please clarify with your SMPP provider the encoding expected (character set for DataCodings
value).

National Language tables
These tables allow to use different character sets in SMS messages. You can choose a language by adding User Data Header.
There is an ability to replace standard GSM 7 bit default alphabet table for the whole text (Locking shift table) or only extension
table (Single shift table).

Code bellow shows abilities how you can specify desired character set:

await client.SubmitAsync(SMS.ForSubmit()
 .Text(text).From("5555").To(phone)
 .NationalLanguageLockingShift(NationalLanguage.Spanish)
);

or

submitSm.UserData.Headers.Add(new NationalLanguageLockingShift(NationalLanguage.Spanish));

The library is also able to detect national language User Data Header in the received PDU and to show text with the correct
character set in property MessageText.

Links

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.microsoft.com/dotnet/api/system.text.encoding
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html
https://docs.microsoft.com/dotnet/api/system.text.encoding
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DataCodings.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.MessageText.html#Inetlab_SMPP_PDU_SubmitSm_MessageText

GSM 03.38
National language shift tables
Data Coding Scheme

http://en.wikipedia.org/wiki/GSM_03.38
http://en.wikipedia.org/wiki/GSM_03.38#National_language_shift_tables
https://en.wikipedia.org/wiki/Data_Coding_Scheme

Message Composer: How to combine concatenated messages
SMS message with long text must be split into small parts (segments). In GSM Standard maximal length of the one short message
is 140 bytes.

Inetlab.SMPP library provides an ability to combine all parts back into full message text. This can be done with MessageComposer
class.

MessageComposer supports all types of PDUs: SubmitSm, SubmitMulti, DeliverSm.

You should invoke AddMessage<TSmppMessage>(TSmppMessage) method in each event handler for PDU received.
MessageComposer saves PDU in memory and waits for the last segment of the message text and raises evFullMessageReceived
event.

When PDU has no concatenation parameters this event will be raised right after calling AddMessage<TSmppMessage>
(TSmppMessage) method.

When MessageComposer didn't receive last segment for a long time it raises evFullMessageTimeout event. Default timeout is 60
seconds.

private readonly SmppClient _client = new SmppClient();
private readonly MessageComposer _composer = new MessageComposer();

public MessageComposerSample()
{
 _client.evDeliverSm += client_evDeliverSm;

 _composer.evFullMessageReceived += OnFullMessageReceived;
 _composer.evFullMessageTimeout += OnFullMessageTimedout;
}

private void client_evDeliverSm(object sender, DeliverSm data)
{
 _composer.AddMessage(data);
}

private void OnFullMessageTimedout(object sender, MessageEventHandlerArgs args)
{
 DeliverSm pdu = args.GetFirst<DeliverSm>();
 _log.Info(string.Format("Incomplete message received from {0}", pdu.SourceAddress));
}

private void OnFullMessageReceived(object sender, MessageEventHandlerArgs args)
{
 DeliverSm pdu = args.GetFirst<DeliverSm>();
 _log.Info(string.Format("Full message received from {0}: {1}", pdu.SourceAddress, args.Text));
}

MessageComposer also provides methods for detecting last segment and getting full message:

private void client_evDeliverSmInline(object sender, DeliverSm data)
{
 _composer.AddMessage(data);
 if (_composer.IsLastSegment(data))
 {
 string receivedText = _composer.GetFullMessage(data);
 }
}

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.AddMessage.html#Inetlab_SMPP_Common_MessageComposer_AddMessage__1___0_
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.evFullMessageReceived.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.AddMessage.html#Inetlab_SMPP_Common_MessageComposer_AddMessage__1___0_
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.evFullMessageTimeout.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.MessageComposer.html

Performance (with sample app)
Production
The speed ultimately is determined by:

how fast you can prepare the messages
network bandwidth
performance on the remote side (SMPP Server)
how fast you can process responses

With well tuned system you can reach approximately 500 messages per second.

Local Test
Inetlab.SMPP performance check on the local machine with logging disabled shows the following result:

Performance: 20356 m/s

Following code demonstrates this:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Net;
using System.Threading.Tasks;
using Inetlab.SMPP;
using Inetlab.SMPP.Common;
using Inetlab.SMPP.Logging;

namespace TestLocalPerformance
{
 class Program
 {
 static void Main(string[] args)
 {

 LogManager.SetLoggerFactory(new ConsoleLogFactory(LogLevel.Info));

 StartApp().ConfigureAwait(false);

 Console.ReadLine();
 }

 public static async Task StartApp()
 {

 using (SmppServer server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777)))
 {
 server.evClientBind += (sender, client, data) => { /*accept all*/ };
 server.evClientSubmitSm += (sender, client, data) => {/*receive all*/ };
 server.Start();

 using (SmppClient client = new SmppClient())
 {
 await client.ConnectAsync("localhost", 7777);

 await client.BindAsync("username", "password");

 Console.WriteLine("Performance: " + await RunTest(client, 50000) + " m/s");
 }

 }
 }

 public static async Task<int> RunTest(SmppClient client, int messagesNumber)
 {

 List<Task> tasks = new List<Task>();

 Stopwatch watch = Stopwatch.StartNew();

 for (int i = 0; i < messagesNumber; i++)
 {
 tasks.Add(client.SubmitAsync(
 SMS.ForSubmit()
 .From("111")
 .To("222")
 .Coding(DataCodings.UCS2)
 .Text("test")));
 }

 await Task.WhenAll(tasks);

 watch.Stop();

 return Convert.ToInt32(messagesNumber / watch.Elapsed.TotalSeconds);

 }
 }
}

The performance test must be started always without attached debugger and application should be built with Release
configuration.

SMPP Server FAQ (with sample app)
How to send message to the connected client
In following code target client is selected and DeliverSm message is sent to this client.

public async Task DeliverToClient(TextMessage message)
{
 string systemId = GetSystemIdByServiceAddress(message.ServiceAddress);

 SmppServerClient client = FindClient(systemId);

 await client.DeliverAsync(SMS.ForDeliver()
 .From(message.PhoneNumber)
 .To(message.ServiceAddress)
 .Text(message.Text)
);

}

How to send messages out from the server on client bind

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.DeliverSm.html

private void OnClientBind(object sender, SmppServerClient client, Bind pdu)
{
 if (client.BindingMode == ConnectionMode.Transceiver || client.BindingMode == ConnectionMode.Receiver)
 {
 //Start messages delivery

 Task messagesTask = DeliverMessagesAsync(client, pdu);

 }
}

private async Task DeliverMessagesAsync(SmppServerClient client, Bind pdu)
{
 var messages = _messageStore.GetMessagesForClient(pdu.SystemId, pdu.SystemType);

 foreach (TextMessage message in messages)
 {
 var pduBuilder = SMS.ForDeliver()
 .From(message.PhoneNumber)
 .To(message.ServiceAddress)
 .Text(message.Text);

 var responses = await client.DeliverAsync(pduBuilder);

 _messageStore.UpdateMessageState(message.Id, responses);
 }
}

public interface IServerMessageStore
{
 IEnumerable<TextMessage> GetMessagesForClient(string systemId, string systemType);
 void UpdateMessageState(string messageId, DeliverSmResp[] responses);
}

public class TextMessage
{
 public string Id { get; set; }
 public string PhoneNumber { get; set; }
 public string Text { get; set; }

 public string ServiceAddress { get; set; }
}

How to set MessageId
MessageId must be set on the server side. When the server receives SubmitSm or SubmitMulti PDU, it generates a corresponding
response and sets MessageId.

You can change the MessageId property in evClientSubmitSm and evClientSubmitMulti event handlers.

private void ServerOnClientSubmitSm(object sender, SmppServerClient client, SubmitSm data)
{
 data.Response.MessageId = Guid.NewGuid().ToString().Substring(0, 8);
}

Sample program link for the SMPP Server

Reade more about creating SMPP-server and Connect (with sample app).

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitSm
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandSet.html#Inetlab_SMPP_Common_CommandSet_SubmitMulti
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitSm.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.evClientSubmitMulti.html
https://gitlab.com/inetlab/smpp-samples/-/blob/master/SmppServerDemo/SmppServerDemo.cs

SMPP Address
SMPP Address (SME Address) is comprised of 3 parameters: Address, TON, NPI.

Address is a text field that represents originator and/or recipient of the message.

TON defines Type of Number

NAME VALU E

Unknown 0

International 1

National 2

Network Specific 3

Subscriber Number 4

Alphanumeric 5

Abbreviated 6

NPI defines Numeric Plan Indicator

NAME VALU E

Unknown 0

ISDN (E163/E164) 1

Data (X.121) 3

Telex (F.69) 4

Land Mobile (E.212) 6

National 8

Private 9

ERMES 10

Internet (IP) 14

WAP Client Id 18

Most used SME address examples
Mobile phone number:

address: +79171234567, TON: 1, NPI: 1

The phone number must be provided in the format <country code><area code><subscriber number>

Short number:

address: 55555, TON: 3, NPI: 0

Alphanumeric string:

address: MyService, TON: 5, NPI: 0

SSL/TLS Connection
Inetlab.SMPP library supports SSL connection between client and server.

For SmppServer class you can set server certificate and supported SSL/TLS protocols.

For SmppClient class you can specify supported SSL/TLS protocols, and optional client certificate for authentication.

using (SmppServer server = new SmppServer(new IPEndPoint(IPAddress.Any, 7777)))
{
 server.EnabledSslProtocols = SslProtocols.Tls12;
 server.ServerCertificate = new X509Certificate2("server_certificate.p12", "cert_password");

 server.Start();

 server.evClientConnected += (sender, client) =>
 {
 var clientCertificate = client.ClientCertificate;
 //You can validate client certificate and disconnect if it is not valid.
 };

 using (SmppClient client = new SmppClient())
 {
 client.EnabledSslProtocols = SslProtocols.Tls12;
 //if required you can be authenticated with client certificate
 client.ClientCertificates.Add(new X509Certificate2("client_certificate.p12", "cert_password"));

 if (await client.ConnectAsync("localhost", 7777))
 {
 BindResp bindResp = await client.BindAsync("username", "password");

 if (bindResp.Header.Status == CommandStatus.ESME_ROK)
 {
 var submitResp = await client.SubmitAsync(
 SMS.ForSubmit()
 .From("111")
 .To("436641234567")
 .Coding(DataCodings.UCS2)
 .Text("Hello World!"));

 if (submitResp.All(x => x.Header.Status == CommandStatus.ESME_ROK))
 {
 client.Logger.Info("Message has been sent.");
 }
 }

 await client.DisconnectAsync();
 }
 }
}

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppServer.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.SmppClient.html

SubmitMulti. Send message to multiple destinations
The SubmitMulti command is used to submit SMPP message for delivery to multiple recipients or to one or more Distribution
Lists.

Recipients can be specified with multiple invocation of the method To

await _client.SubmitAsync(SMS.ForSubmitMulti()
 .ServiceType("test")
 .Text("Test Test")
 .From("MyService")
 .To("1111")
 .To("2222")
 .To("3333")
);

this can be done from the phone numbers collection

var pduBuilder = SMS.ForSubmitMulti()
 .ServiceType("test")
 .Text("Test Test")
 .From("MyService");

foreach (string phoneNumber in phoneNumbers)
{
 pduBuilder.To(phoneNumber);
}

another possibility is to create DistributionList

List<IAddress> destList = new List<IAddress>();

destList.Add(new SmeAddress("11111111111", AddressTON.Unknown, AddressNPI.ISDN));
destList.Add(new DistributionList("my_destribution_list_on_SMPP_Server"));

var submitResponses = await _client.SubmitAsync(SMS.ForSubmitMulti()
 .ServiceType("test")
 .Text("Test Test")
 .From("MyService")
 .ToDestinations(destList)
);

When SubmitMultiResp response received, it means SMPP server stored message for further delivery to recipients.

SubmitMulti message for destination address is accepted by the SMPP server only when you receive ESME_ROK in all responses
in then result list IList<SubmitMultiResp> and destination address does not exist in UnsuccessfulDeliveries of response.

https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Builders.IDestinationAddressBuilder-1.To.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.DistributionList.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMultiResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMulti.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.Common.CommandStatus.html#Inetlab_SMPP_Common_CommandStatus_ESME_ROK
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMultiResp.html
https://docs.inetlab.com/smpp/v2.8/api/Inetlab.SMPP.PDU.SubmitMultiResp.UnsuccessfulDeliveries.html#Inetlab_SMPP_PDU_SubmitMultiResp_UnsuccessfulDeliveries

MMS notifications
MMS Notification
After creating a MMS content and placing it on a web server, you can tell MMS compatible mobile phone to retrieve the content.

var smList = MMS.Notification(new MMSNotification
 {
 TransactionId = "NOK5CyhldCAWF",
 From = "+79171234567/TYPE=PLMN",
 MessageClass = MMSMessageClass.Personal,
 MessageSize = 858,
 Expiry = TimeSpan.FromDays(30),
 ContentLocation = "http://test.com/resources/NOK5CyhldCAWFygAxJ"
 })
 .TransactionId(0x41);

await _client.SubmitAsync(smList);

MMS Delivery
When MMS Content was received from another MMS client, you can notify sender that receipient retrieved the content.

var smList = MMS.Delivery(new MMSDelivery
 {
 MessageId = "041310322550000000004",
 To = "+79171234567/TYPE=PLMN",
 Date = new DateTime(2020, 4, 13, 12, 32, 40),
 Status = MMSStatus.Retrieved
 })
 .TransactionId(0x42);

await _client.SubmitAsync(smList);

WAP Push
WAP PUSH enables the delivery of multimedia content to mobile devices. A hyperlink is delivered to the mobile device of the
recipient as a Service Indication message. The recipient mobile device will automatically prompt the recipient to download the
content on the hyperlink and display it over a GPRS/WAP connection.

byte transactionId = 1;

var responses = await _client.SubmitAsync(SMS.ForWapPush()
 .TransactionId(transactionId)
 .From("1111").To("60166609999")
 .Title("Google").Url("http://www.google.com")
);

Implementing USSD (Unstructured Supplementary Service
Data)
Overview
The USSD session can be initiated by the Mobile Station (MS) or an External Short Message Entity (ESME). The USSD messages
create a real-time connection during a USSD session. The connection remains open, allowing a two-way exchange of a sequence
of data.

This makes USSD more responsive than services that use SMS.

USSD can be used to provide:

enhance mobile marketing capabilities
menu-based information services
interactive data services
mobile-money services
location-based content services
callback service (to reduce phone charges while roaming)
configuring the phone on the network

Requirements
USSD over SMPP solution is always vendor specific and requires service description from your SMPP provider or mobile network
operator. We can help you to implement this with Inetlab.SMPP library, but you need to send us this description.

Types of USSD messages
Set up a session: Begin message
Continue a session: Continue message
End a session: End message
Abort a session: Abort message

Types of USSD operations
The USSD session involves the following operations:

Request: to request a session
If the session is initiated by an MS, the MS can only send a Request message in the first message. In the subsequent
message exchange, the MS can only respond to the Request or Notify message from an ESME.
If the session is initiated by an ESME, the Request message can be sent by only the ESME, while the MS can only respond to
the message.

Notify: to notify of a session

The Notify message can be sent by only an ESME. The Notify message differs from the Request message in that an MS responds
to a Notify message automatically, but the response to a Request message can only be done manually. For example, send a
response character string.

Response: to respond to a session

The response to a Request or Notify message can be sent by the MS or an ESME. When the ESME sends a Response message, it
indicates the end of a session.

Release: to release a session

When an ESME ends a session initiated by itself, the operation type can only be Release.

Getting Help
To get support please contact us at InetLab website contact page or via our forum.

https://inetlab.com/Contact.html
https://inetlab.com/support/

Migration from v1.x to 2.x
How to solve some compile issues:

SmppClient
1. Missing BatchMonitor class. Use instead client.Submit(IEnumerable<SubmitSm> batch) . It waits when all responses will

be received for a batch.

2. Events evBindComplete , evSubmitComplete , evQueryComplete were depricated. It is possible to use async await pattern or
ContinueWith for corresponding Bind , Submit , Query methods.

3. _client.AddressRange , _client.AddrNpi and _client.AddrTon must be specified as
_client.EsmeAddress = new SmeAddress(AddressRange, AddrTon, AddrNpi);

4. Sequence number and Command Status are moved to Header property of PDU.

data.Status replaced with data.Header.Status ,
data.Sequence replaced with data.Header.Sequence

1. client.GetMessageText is moved to client.EncodingMapper.GetMessageText

2. PDU Properties

SourceAddrTon , SourceAddrNpi , SourceAddr replaced with SourceAddress of type SmeAddress
DestAddrTon , DestAddrNpi , DestAddr replaced with DestinationAddress of type SmeAddress
UserDataPdu replaced with UserData
Optional replaced with Parameters

1. Property MessageText in SubmitSm , SubmitMulti , DeliverSm , DataSm , ReplaceSm classes is deprecated. Use the method
pdu.GetMessageText(client.EncodingMapper) .

2. Method SmppClientBase.MapEncoding moved to SmppClientBase.EncodingMapper.MapEncoding

SmppServer
1. Namespace for SmppServerClient class changed to Inetlab.SMPP .

2. IPEndPoint of the server must be specified in SmppServer constructor, instead of Start method of this class.

Serialization
Method submitSm.Serialize can be replaced with extension method:

 byte[] pduData = submitSm.Serialize(client.EncodingMapper);

Static method SubmitSm.Deserialize can be replaced with code:

 byte[] pduData = ...;

 SubmitSm pdu = pduData.Deserialize<SubmitSm>(client.EncodingMapper);

Report a Bug
To report a bug please contact us at InetLab website contact page or via our forum.

https://inetlab.com/Contact.html
https://inetlab.com/support/

Changelog
[2.9.0] - 2020-12-31 (Not Yet Released)
Added

MMS m-notification-ind and m-delivery-ind over SMPP
WorkersTaskScheduler class creates worker threads to handle received requests for a client.
ReceiveTaskScheduler property in SmppClientBase class. Received requests can be handled in individual or global
TaskScheduller or in standard TaskScheduler.Default. By default client uses WorkersTaskScheduler with 3 worker threads.
RetryUntilConnectedAsync extension method for SmppClient class that helps to establish connection when a SMPP server is
temporary unreachable.
SubmitBatchAndWaitForDeliveryAsync extension method for SmppClient class that helps to submit a batch of SubmitSm
PDUs and receive all delivery receipts.
SubmitWithRepeatAsync extension method that help to repeat the SubmitSm requests on disconnection or unsuccess
reponse status.

Changed
Target Framework changed from .NET 4.5.2 to .NET 4.6.1
SmppClientBase.SendQueueLimit limits a number of requests waiting for response. When this limit is exceeded,
SubmitAsync method is blocked until queue has a free slot.
Less GC pressure by reusing reading buffer.
Improve DeliverReceipt deserialization when received PDU has wrong DataCoding.
Deliver receipt serializer enriches DeliverSm PDU with optional parameters (MessageState, ReceiptedMessageId,
NetworkErrorCode) only when PDU was not received from remote side.
Throws GenericNackSmppException when GENERICK_NACK response received in Submit methods.
Throws ObjectDisposedException when trying to call public method on disposed classes SmppClientBase, SmppClient,
SmppServerClient
New implementation of SMPP connection that frees all used resources after disconnect.
Improved batch submit. Send several PDUs in one TCP packet.

Fixed
ArgumentNullException in MessageComposer by adding a PDU with empty text
SmppClientBase.SendSpeedLimit sends more than allowed PDUs when run SubmitAsync in tasks.
GSMEncoding returns wrong number of bytes for Turkish charset when both NationalLanguageLockingShift and
NationalLanguageSingleShift are specified.

Removed
evConnected event from SmppClientBase class. SmppClient is connected after call of the method ConnectAsync or on the
event evRecoverySucceeded. SmppServer has own method evClientConnected.
Obsolete properties from PDU classes.
QueueState class and SmppClientBase.Queue property. Use SmppClientBase.Metrics instead.
SmppClientBase.WorkerThreads property. Set the SmppClientBase.ReceiveTaskScheduler property to the instance new
WorkersTaskScheduler(3).

[2.8.6] - 2020-11-19
Fixed

CancelSm serialization

[2.8.5] - 2020-11-12
Fixed

NationalLanguageLockingShift user data header

[2.8.4] - 2020-11-12
B reaking Changes

license file Inetlab.SMPP.license must contain product name. Generate new license file in your Inetlab Account. ### Fixed
write license loading errors in license status.

[2.8.3] - 2020-11-04
Fixed

failed to verify license on macos

[2.8.2] - 2020-09-01
Fixed

inaccurate SendSpeedLimit on the machine with high-resolution performance counter.

[2.8.1] - 2020-06-16
Fixed

SendSpeedLimit and result speed has significant difference.
Send Queue can be blocked in some edge cases.
Reconnect doesn't start when ThreadPool is overloaded
Race condition in MessageComposer causes NullReferenceException

[2.8.0] - 2020-04-02
Added:

SendResponseAsync method in SmppClientBase class. Response sending can be prevented in a event handler by changing
it to null. req.Response = null;
Extension method CanBeEncoded to validate an Encoding for given text message
MessageComposer with persistence storage interface to save message parts in external database instead of memory.

Fixed:
NullReferenceException in the event evFullMessageReceived of MessageComposer class
Setup Project: Unable to update the dependencies of the project. The dependencies for the object 'Inetlab.SMPP.dll' cannot
be determined.

[2.7.1] - 2020-01-20
Changed

move InterfaceVersion property to the SmppClientBase class

Fixed:
GenericNack PDU has not been sent when wrong PDU header is received.

[2.7.0] - 2019-12-11
Added

Added Metrics property for SmppClientBase class.
Support of 16 bit concatenation parameters in SMS builder classes.

Changed
ReceiveSpeedLimit with rate limiting. Measure PDU count for defined time unit instead of interval between PDUs.
rename async-methods according to the dotnet naming conventions
InactivityTimeout starts when SmppServerClient is connected and EnquireLinkInterval is not defined for this client.
Generate long number MessageId for SubmitSmResp and SubmitMultiResp. According to SMPP Protocol MessageId should
contain only digits.
Timeout timer in MessageComposer restarts when next segment of the message is received.

Fixed
Submit hangs after unexpected disconnect.
Exception by changing send or receive buffer size.
SmppTime.Format for relative time.
OverflowException in GSMEncoding.

Removed
Support of .NET Standard 1.4
InactivityTimeout from SmppClient

[2.6.14] - 2019-09-20
Fixed

SmppTime.Format for relative time.
exception in demo applications

[2.6.13] - 2019-08-14
Fixed

multithread-issue with ConnectedClients in SmppServer class
set SmppClient.SystemID and SmppClient.SystemType properties when client is bound.

[2.6.12] - 2019-07-26
Added

convert UserDataHeader to and from byte array
SmppTime functions for formatting and parsing scheduled delivery times and expiry times in PDU.
EnsureReferenceNumber method that sets next reference number for a list of concatenated PDUs.
property InactivityTimeout in the class SmppClientBase. Default is 2 minutes. Connection will be dropped when in specified
period of time no SMPP message was exchanged. InactivityTimeout doesn't work when EnquireLinkInterval is defined.

Fixed
SmppServer: when client.ReceiveSpeedLimit is set to any value, first message is always throttled.
text splitting: Incorrect message length of 1st PDU when text encoded in GSM encoding and contains extended characters
ReferenceNumber=0 for submitted concatenated PDUs.

[2.6.11] - 2019-04-20
Fixed

Connection failed. Error Code: 10048. Only one usage of each socket address (protocol/network address/port) is normally
permitted. Occurs when call Connect method from different threads at the same time.

[2.6.10] - 2019-04-19

Fixed
exceptions by incorrect disconnect.

[2.6.9] - 2019-04-15
Fixed

Request property is null in received response PDU class.

Added
ReceiveBufferSize and SendBufferSize properties for SmppClientBase.

[2.6.8] - 2019-03-27
Fixed

wrong text splitting in SMS builder for GSMPackedEncoding.

[2.6.7] - 2019-03-27
Fixed

StackOverflowException by submitting array of SubmitMulti.
destination addresses serialization for SubmitMulti
short message length calculation

[2.6.6] - 2019-03-25
Fixed

exception in GetMessageText method for DeliverSm with empty text.

[2.6.5] - 2019-03-18
Fixed

exception in GetMessageText method for DeliverSm without receipt.

[2.6.4] - 2019-03-15
Fixed

missed last character in the last segment of the concatenated message created with SMS builders.

Added
Extension method smppPdu.GetMessageText(EncodingMapper) as replacement for MessageText property in a PDU class.
TLVCollection.RegisterParameter(ushort tag) method for registering custom TLV parameter type for any tag value. It helps
to represent some complex parameters as structured objects. Example: var parameter = pdu.Parameters.Of();

Changed
MessageText property in PDU classes is obsolete. Use the function client.EncodingMapper.GetMessageText(pdu) or
pdu.GetMessageText(client.EncodingMapper) to get th message text contained in the PDU.

[2.6.3] - 2019-03-04
Fixed

failed to raise some events with attached delegate that doesn't has target object.

Improved
FileLogger multi-threading improvements.

[2.6.2] - 2019-02-07
Added

ILogFactory interface with implementations for File and Console

Fixed
client hangs by Dispose when it was never connected

[2.6.1] - 2019-02-04
Fixed

Cannot send 160 characters in one part SMS in GSM Encoding

[2.6.0] - 2019-01-14
Added

ProxyProtocolEnabled property for SmppServerClient class. This property should be enabled in evClientConnected event
handler to detect proxy protocol in the network stream of connected client.
Signed with Strong Name
ClonePDU, Serialize methods for SmppPDU classes.
SMS.ForData method for building concatenated DataSm PDUs.
SMS.ForDeliver is able to create delivery receipt in MessagePayload parameter.

Fixed
SmppServer stops accepting new connections by invalid handshake
Text splitter for building concatenated message parts
Event evClientDataSm didn't raise in the SmppServer.
Sometimes SmppServerClient doesn't disconnect properly in SmppServer
concurrency issues in MessageComposer
library sends response with status ESME_ROK when SmppServer has no attached event handler for a request PDU. It should
send unsuccess status f.i. ESME_RINVCMDID.

AP I Changes
Replaced methods AddMessagePayload, AddSARReferenceNumber, AddSARSequenceNumber, AddSARTotalSegments and
AddMoreMessagesToSend with corresponding classes in Inetlab.SMPP.Parameters namespace.
Renamed the property "Optional" to "Parameters" in PDU classes. (backwards-compatible)
Removed unnecessary TLV constructor with length parameter. Length is always equal to value array length.
Removed ISmppMessage interface
Renamed namespace Inetlab.SMPP.Common.Headers to Inetlab.SMPP.Headers
Rename propery UserDataPdu to UserData for classes SubmitSm, SubmitMulti DeliverSm, ReplaceSm. (backwards-
compatible)
MessageInPayload method tells SMS builder to send complete message text in message_payload parameter. With optional
messageSize method parameter you can decrease the size of message segment if you need to send concatenation in SAR
parameters.
Simplified ILog interface

[2.5.4] - 2018-09-16
Changed

MessageComposer.Timeout property to TimeStamp

Added
SmppClient.Submit methods with IEnumerable parameter
better documentation

Fixed
Hanlde SocketException OperationAborted when server stops

[2.5.3] - 2018-09-08
Fixed

SubmitSpeedLimit is ignored
sometimes SMPP PDU reading is failed

[2.5.2] - 2018-08-06
Fixed

Messages with data coding Class0 (0xF0) are split up in wrong way

[2.5.1] - 2018-07-30
Fixed

wrong BindingMode for SmppServerClient after Unbind.

[2.5.0] - 2018-07-29
Added

Automatic detection for Proxy protocol https://www.haproxy.com/blog/haproxy/proxy-protocol/ ### Implemented
Unbind logic for SmppClient and SmppServerClient classes

[2.4.1] - 2018-06-19
Fixed

issue with licensing module

[2.4.0] - 2018-05-30
Added

Automatic connection recovery.

[2.3.2] - 2018-04-20
Added

MessageComposer allows to get its items for concatenated messages. ### Changed
creation for user data headers types.

[2.3.1] - 2018-04-18
Fixed

PDU reader and writer
split text on concatenation parts

https://www.haproxy.com/blog/haproxy/proxy-protocol/

[2.3.0] - 2018-03-18
Added

SmppClientBase.SendQueueLimit limits the number of sending SMPP messages to remote side. Delays further SMPP
requests when limit is exceeded.

Changed
SmppServerClient.ReceiveQueueLimit replaced with SmppClientBase.ReceivedRequestQueueLimit

Improved
improved: processing of connect and disconnect.

[2.2.0] - 2018-02-01
Improved

better processing of request and response PDU

Changed
Flow Control. SmppServerClient.ReceiveQueueLimit defines allowed number of SMPP requests in receive queue. If receive
queueu is full, library stops receive from network buffer and waits until queue has a place again. It is better alternative for
ESME_RMSGQFUL response status. ### Fixed
MessageComposer raises evFullMessageReceived sometimes two times by processing concatenated message with two
parts.

[2.1.2] - 2017-12-11
Improved

internal queue for processing PDU.

[2.1.1] - 2017-12-10
Improved

processing of connect and disconnect

Added
From and To methods with SmeAddress parameter to SMS Builders

[2.1.0] - 2017-10-18
Added

SendSpeedLimit property for SmppClientBase class, that limits number of requests per second to remote side
Priority processing for response PDUs.
Name property to distinguish instances in logger
Deliver method in SmmpServerClient class
SubmitData method in SmppClientBase class

[2.0.1] - 2017-10-06
Added

decode receipt for IntermediateDeliveryNotification

Fixed
sequence number generation

[2.0.0] - 2017-08-15
first version for .NET Standard 1.4

END-USER LICENSE AGREEMENT
for all versions of components Inetlab.SMPP Inetlab MM7.NET

IMPORTANT-READ CAREFULLY:

This End-User License Agreement ("LICENSE") is a legal agreement between Licensee (either an individual or a single entity) and
InetLab e.U. represented by Svetlana Tsynaeva, for the software package containing this LICENSE, which includes computer
software and may include associated "online" or electronic documentation ("SOFTWARE"). The SOFTWARE also includes any
updates and supplements to the original SOFTWARE provided to you by InetLab e.U.. By installing, copying or otherwise using the
SOFTWARE, you agree to be bound by the terms of this LICENSE. If you do not agree to all the terms of this LICENSE, do not
install or use the SOFTWARE.

SOFTWARE LICENSE

Copyright laws and international copyright treaties, as well as other intellectual property laws and treaties protect the SOFTWARE.
This is a license agreement and NOT an agreement for sale. InetLab e.U. continues to own the copy of the SOFTWARE contained
on the disk or CD-ROM and all copies thereof.

1. LICENSE TO USE SOFTWARE.

1. DEVELOPER LICENSE. The SOFTWARE is licensed per individual developer. You may make copies on more than one
computer, as long as the use of the SOFTWARE is by the same developer. Each developer working with the
SOFTWARE must purchase a copy of the component for his/her own development needs.

2. SOURCE CODE. Licensee has no right of access to the source code of the SOFTWARE, unless he purchases source code
separately as defined in section 1.3.

3. SOURCE CODE LICENSE. Licensee who purchases source code separately and in addition to previously purchased
license(s) has right to use the source code for debugging, bug fixing and any other modifications. Under no
circumstances may the source code be used in whole or in part, as the basis for creating a product that provides the
same, or substantially the same, functionality as any InetLab e.U. product. Licensee may not distribute the source code,
or any modification, enhancement, derivative work and/or extension thereto, in source code form. SOURCE CODE IS
LICENSED AS IS. InetLab e.U. DOES NOT AND SHALL NOT PROVIDE ANY TECHNICAL SUPPORT FOR SOURCE CODE
LICENSE.

2. DISTRIBUTION / REDISTRIBUTABLE CODE

1. SAMPLE CODE. In addition to the LICENSE granted in Section 1, InetLab e.U. grants the Licensee the right to use and
modify the source code versions of those portions of the SOFTWARE that are identified in the documentation as the
Sample Code and located in the "SAMPLES" subdirectory(s) of the SOFTWARE.

2. REDISTRIBUTABLE FILES. In addition to the LICENSE granted in Section 1, InetLab e.U. grants the Licensee a
nonexclusive, royalty-free right to distribute the object code version of those portions of the SOFTWARE identified as
the redistributable files ("REDISTRIBUTABLE FILES"), provided Licensee complies with the redistribution requirements.

The following files in the SOFTWARE distribution are considered REDISTRIBUTABLE FILES under this LICENSE:

Inetlab.*.dll

1. REDISTRIBUTION REQUIREMENTS. If Licensee redistributes the REDISTRIBUTABLE FILES, he/she agrees to (a)
distribute the REDISTRIBUTABLE FILES in object code form only in conjunction with, and as part of her/his software
application product which adds significant and primary functionality; (b) include a valid copyright notice on his/her
SOFTWARE; and (c) indemnify, hold harmless, and defend InetLab e.U. from and against any claims or lawsuits,
including attorney's fees, that arise or result from the use and distribution of his/her software application product.

2. LIMITATIONS. Distribution by the Licensee of any executables, source code or other files distributed by InetLab e.U. as
part of this SOFTWARE and not identified as a REDISTRIBUTABLE FILE is prohibited. Redistribution of
REDISTRIBUTABLE FILES by Licensee's users without the appropriate redistribution LICENSE is prohibited.

Licensee shall not develop applications that provide an application programmable interface to the SOFTWARE. Licensee shall not
develop applications that substantially duplicate the capabilities of the SOFTWARE or, in the reasonable opinion of InetLab e.U.,
compete with it.

Licensee MAY NOT distribute the SOFTWARE, in any format, to other users for development or compiling purposes. In particular,
if Licensee creates a component/control using the SOFTWARE as a constituent component/control, Licensee MAY NOT distribute
the component/control created with the SOFTWARE (in any format) to users for being used at design time and/or for
development purposes.

1. ADDITIONAL RIGHTS AND LIMITATIONS

1. RESTRICTIONS. Licensee may not alter, assign, create derivative works, decompile, disassemble, distribute, give, lease,
loan, modify, rent, reverse engineer, sell, sub-license, transfer or translate in any way, by any means or any medium
the SOFTWARE. Licensee will use its best efforts and take all reasonable steps to protect the SOFTWARE from
unauthorized use, copying or dissemination.

2. SUPPORT SERVICES. InetLab e.U. may provide you with support services related to the SOFTWARE ("Support
Services"). Use of Support Services is governed by the policies and programs described in "online" documentation
and/or in other InetLab e.U. provided materials. Any supplemental software code provided to you as part of the
Support Services shall be considered part of the SOFTWARE and subject to the terms and conditions of this LICENSE.
With respect to technical information you provide to InetLab e.U. as part of the Support Services, InetLab e.U. may use
such information for its business purposes, including for product support and development. InetLab e.U. will not
utilize such technical information in a form that personally identifies Licensee.

3. The SOFTWARE is licensed as a single product and the software programs comprising SOFTWARE may not be
separated.

4. TERMINATION. If the SOFTWARE is used in any way not expressly and specifically permitted by this LICENSE, then the
LICENSE shall immediately terminate. Upon the termination of the LICENSE, Licensee shall thereafter make no further
use of the SOFTWARE, and Licensee shall return or destroy all licensed materials.

2. UPGRADES, ENHANCEMENTS AND UPDATES. From time to time, at its sole discretion, InetLab e.U. may provide
enhancements, updates, or new versions of the SOFTWARE on its then standard terms and conditions thereof. This
Agreement shall apply to such enhancements. Licensee is not entitled to updates or upgrades of the SOFTWARE unless such
right is stated in additional agreement between Licensee and InetLab e.U.. If new version of the SOFTWARE is released
within thirty (30) days from the day of purchase and the price of new version is equal or smaller than the price of purchased
version of the SOFTWARE, Licensee is entitled to a new version at zero cost. Received new version shall be considered part
of purchased version of the SOFTWARE and the number of licensed developers will stay the same as granted in Section 1.1.

3. COPYRIGHT. All title and intellectual property rights in and to the SOFTWARE (including but not limited to any images,
photographs, animations, video, audio, music and text incorporated into the SOFTWARE) and any copies of the SOFTWARE
are owned by InetLab e.U. or its suppliers. All title and intellectual property rights in and to the content which may be
accessed through use of the SOFTWARE is the property of the respective content owner and may be protected by applicable
copyright or other intellectual property laws and treaties. This LICENSE grants Licensee no rights to use such content.
InetLab e.U. reserves all rights not expressly granted.

4. LIMITED WARRANTY. Licensee assumes all responsibility for the selection of the SOFTWARE as appropriate to achieve the
results he/she intends. The SOFTWARE and documentation are not represented to be error-free. InetLab e.U. warrants that
(a) the SOFTWARE shall perform substantially as described in its documentation for a period of thirty (30) days from
purchase, and (b) any Support Services provided by InetLab e.U. shall be substantially as described in our accompanying
materials, and our Support Team will make commercially reasonable efforts to solve any problem covered by our warranty.
EXCEPT FOR THE FOREGOING LIMITED WARRANTY AND TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND OF FITNESS FOR A PARTICULAR
PURPOSE.

5. CUSTOMER REMEDIES. InetLab e.U. entire liability and Licensee's exclusive remedy shall be, at InetLab e.U. option, either (a)
return of the price paid or (b) repair or replacement of the SOFTWARE that does not meet InetLab e.U. Limited Warranty and
which is returned to InetLab e.U. with a copy of Licensee's receipt. SOFTWARE purchased other than directly from InetLab
e.U. shall be returned to the place where it was purchased. This Limited Warranty is void if failure of the SOFTWARE has
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will be warranted for the remainder of the
original warranty period or remainder of the thirty (30) days from the day of purchase, whichever is longer.

6. NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by law, in no event shall InetLab e.U. or
its suppliers be liable for any special, incidental, indirect or consequential damages whatsoever (including, without
limitation, damages for loss of business profits, business interruption, loss of business information, or any other pecuniary
loss) arising out of use of or inability to use this SOFTWARE, or the failure to provide Support Services, even if InetLab e.U.
or its dealer have been advised of the possibility of such damages. In any case, InetLab e.U. entire liability under any
provision of this LICENSE shall be limited to the amount actually paid by the licensee for the SOFTWARE.

7. GENERAL PROVISION. Licensee shall have no right to sub-license any of the rights of this agreement, for any reason. In the
event of the breach by Licensee of this Agreement, he/she shall be liable for all damages to InetLab e.U., and this Agreement
shall be terminated. If any provision of this Agreement shall be deemed to be invalid, illegal, or unenforceable, the validity,
legality, and enforceability of the remaining portions of this Agreement shall not be affected or impaired thereby. In the
event of a legal proceeding arising out of this Agreement, the prevailing party shall be awarded all legal costs incurred.

8. TAXES AND DUTIES. Licensee shall be responsible for the payment of all taxes or duties that may now or hereafter be
imposed by any authority upon this Agreement for the supply, use, or maintenance of the SOFTWARE, and if any of the
foregoing taxes or duties are paid at any time by InetLab e.U., Licensee shall reimburse InetLab e.U. in full upon demand.

9. MISCELLANEOUS. This Agreement shall be governed by, construed and enforced in accordance with the laws of the Austria.
Each party consents to the personal jurisdiction of the Austria and agrees to commence any legal proceedings arising out of
this LICENSE shall be conducted solely in the courts located in the Austria. This is the entire agreement between you and
InetLab e.U. which supersedes any prior agreement, whether written or oral, relating to this subject matter. Licensee
acknowledges that he/she has read this Agreement, understands it, and agrees to be bound by its terms and conditions.

	Inetlab.SMPP
	Table of Contents
	Introduction
	How To Try the Library
	SMPP Client
	Creation of SMPP-client and Connect
	Authentication (Bind)
	Connection recovery
	Create and send messages
	Receive messages
	Track message sending and delivery

	SMPP Server
	Create an SMPP-server and Connect (with sample app)
	Client authentication (Bind)
	Keeping connection active (InactivityTimeout and EnquireLink)
	Receive messages
	Send messages
	Deliver messages from sender to recipient
	Implementing SMPP Gateway
	Control SMPP responses

	Troubleshooting
	Common Mistakes
	Connection Lost
	Throttling Error
	Built-in Logging
	Diagnostic
	Tuning
	Wireshark

	FAQ
	SMPP Client
	Sending Commands and Getting Responses
	Concatenation
	SMPP Connection Mode
	Deivery Receipt
	Enquire Link
	How to install the license file
	Logging
	Map Encoding
	Message Composer
	Performance (with sample app)
	SMPP Server (with sample app)
	SMPP Address
	SSL/TLS Connection
	SubmitMulti. Send message to multiple destinations
	MMS notifications
	WAP Push
	Implementing USSD (Unstructured Supplementary Service Data)

	Getting Help
	Migration 1.x to 2.x
	Report a Bug
	Change Log
	License

